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LG-RANGE PROPAGATION OF SPHERICAL SHCCRWAVES FROM EXPLOSIONS IN AIR

Although thers has been occesioral interest in using analytical
techniques to predict explosion shockwave pressures ovt to large
distances, there has been littls emphasis on employing modsrm
computer technigues to provide such predictions. Use of nuclear
explosicas for peacaful purposes--such as digging a canal-—-requires
accurate evaluation of possibie airblast damage among other
considerations. A recessary pert of the airvlast evaluation is an
accurate free-air prassure-distance curve for explcsions. This
report pressnis resulte obtained toward that end for beth nuclear
and for TNT explesions.

This investigation was sponsored joinily by the Defense Atomic
Support Agency (under RIN 1004, Work Unit 1027} and by the
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(Nuclear Safety Program—Acoustic Wave Effects Project).
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1. INTRODUCTION

In the past, most hydrocode calculations for sxplosions in real
air vere stopped at shock overpressures near 1.0 psi either because
of numerical difficulties or becauss of lack of interest in such low
pregsures, In this report we discuss calculations that we havs
carrisd cut to about 0.2 psi.

We ars concsrned hers only with sea-level, free-sir explosions;
i,e., explosions that occur in an infinite volums of air at one
atmosphere pressure and 15°C. Results for this uniform-atmosphere
situation are of interest becauss thay can be used as bass data for
calcvlations including atmospheric perturbations.

2. THE PRESENT CALCULATIONS
2.1 Nyclear Explosion

A homcgensous-sphere modsl is uvssd for the explosion. The
initial condition is a quisscent sphere of heated real air 4.251 meters
iaxoﬁdius, at ambient density (0.001225 g/em3) and containing 1ET
( caloriss) of internal emargy. The solution to this initial-valus
problem is generated by the WUNDY hydrocods (ref. 1), with changes to
the rezoning routine, a mors accurate equation of state for air, aand
double precision in critical quantitisa. & zone sizs of two meters
vwas used in the shock waws, To prevent excessive rownding of ths
sheek front, the linsar viscosity was dscreased as the shock became
woaker,

The calculated overpressure vs distance data are given in columns
1 and 4 of Table I and in Figure 1. (The calculations wers stopped at
C.2 psi becauss of high computer cost.) These data are in satisfactory
agreement with nuclear test data over the range 10% to 7 pei as shown an
Figure 1 of ref. 2a for earlier WINDY calculations. Below 10 psi
the present calculationa are {ound to agree with the aircraft curwe
of Figure 3.3-7 of ref. 2b. Figure 1 slso shows the lower end of the
theoretical Problem M curve (ref. 3).

2.2 THT Explesion
A similar calculation was made for a one-pound sphere of TNT.

The ccrditions inside the charge at the time the detonation wave reaches
the surface wers calculated from the aphericel Taylor wave with the

LSZK equation of state for the explosion products (ref. 4). Thess
calculations are similar to thoss reported in reference 5 except that

2 rore recent equation of state for air was used and the calculation

vas carried much further (ref. 5 stoppsd at 2.5 psi). A zome size

of one com was used in ths shock wave.

The calculated overpressure vs distance data are given in colwms
1 and 5 of Tabla I and in Figure Z.
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3. EXTENSION OF PRESENT CALCULATIOHS

3.1 B!

The problem of a nuclear e xplosion in jdesl air (gamma=1,4) has
baen calculated by Brode (ref. 6), by Coidstine and von Neumann
(ref. 7), and by Okhotsimekii, et al (ref. 8). All of these mlculations
stop near 1,0 psi. Brode used the artificiel viscosity method.
References 7 and 8 used sheck fitting., All of thess solutions are in
excellent agreamsnt. We also calculated this problem with WONIX to
about 1.0 psi to verify our mathod of calculation and found excellent
agreement with thess previous solutions.

The ideal air situstion is of interest here because the calcuiation
of reference 8 was extended by Okhotsimskii and Vlasova (ref. 9) to &
very large distance (tc 0,00016 psi). They continued to use shock
fitting but revrote the difference equations for the flow behind the
front in terms of overpressure, overdensity, etc. to avoid numericali
difficulties. (Ws did the vquivalent thing by using doubls precision
in our calculations.) The solution in reference 9 was carried to 0.G3
psi, where it was stopped by numericel instabilities. It was carried
further by an approximate method of Knristiarovich., The nst result was
a numerical solution out to 0.00016 psi. The nwmsrical values for
overpressure vs radius are given in columms 1, 2 and 3 cf Tatle I.

The logarithmic slope of the pressurs vs distance curve is shown in
Figure 3. The slope has the point source valws of -3.0 nesr the
sxplosion and gradually approaches -1,0 at low pressures, Figure 3
algo shows the slope for the present real-air calculstions.

We will use this Okhotsimskii-Vlasova solution for jdegl air to
sxtend our present caiculations for rggl air.

- 3.2 Agvpptotig Bepavior

N Ths probler of propagation of a spherical shockwaws to very large
Y distances has besn considered by Kirlaood and Beths {ref. 10), by

Landau {see ref. 11), and by Whitham (ref. 12), all of whom arrived at

the following asymptotic formula for decay of peak overprsssure:

ar = a[or TG0 | (1)

where AP is peak shock front overpressure, r is radial distance from
tha origin to the shock front, and A aré b are constants. This
equation arises from an argument based on the logarithmic divergence
of the characteristics bshind the shock front. Equation (1) has teen
used by Miles (ref. 13) %o extend the numerical calculations of

Srode (ref. 14) to very low pressures.

This equation is consistent with ths Okhotsimskii-Vlasova solution; )
we were able to fit their calculsted results within one psreount fer
the range below 0.4 psi.

We have not used this equation in the results we give in this

report. It has besn usad Lere only as & check on the asymptotic
behevior of ths Soviet caiculation.
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4. EFFECTIVE BLAST YIZLDS

Each of these calculations obeys yisld scaling exactly; i.e., the
radius at which a given overpressure occurs iz proportional to the :
cube root of the sxplosion energy. However, the three different
types of explosions considered here (nuclear in ideal air, nuclear in
resl air, and TNT in real air) all give different amounts of dissipation
near the source and thus have different amounts of energy availeble for
the far-out blast wave.

We can compare the "effective blast yields" of two explosions by
simply noting the distances at which a given overpressure occurs.
The ferther anexplosion is able to give & given overpressurs, tha
greater its effective yisld. The effective yleld ratio (at a given
overpressure) of two explosions is simply the cube of the distance
ratio. Figure 4 shows the effective blast yield of the calculated
1KT nuclear explosion vs to calculated ons pound TNT explosion scaled
to two million pounds, both in real air. The line is drawn by eys through
the calculeted points. Tne effective yield varies with overpressure, as
expected, since the pressure-vs-distance curves are not parallel. The
offective yisld appears to settle down near 0.7 below 1.0 psi¥. Thia
gives an enerpgy equivalence, for explosious in real air:

0.7 kiiotons TNT = 1.0KT nuclear (below 1.0 psi).

In a similar way, the ideal nuclear explosion can be compared with
the real-air nuclearexplosion. Figure 5 shows the effective yisld.
The snergy equivalence at low pressures is:

0.71KT nuclear, ideal air = 1.0ZT puclear, real air
(telow 7.0 psi).

Figure 5 alsc shows tho energy equivslence for ths Problem M celculation
(ref. 3). Problem M takes an upward turn mear 2.0 psi.

If we assume that thess effective yields rerain constent (i.e., that
the overpressure vs distance curves rerain parallel) for all overprsssures
below 0.2 psi, we can extend the real-air czlculations by using the
ideal-air results with the appropriate effective yield. To get the
nucleai /geal—air distances, we multiply ths ideal-air distances by
{0.71) = 0.852. To get the distances in meters for one pownd of TKT,
we multiply the iceai-air distances by 7.98. (To get the distances for
1 xiloton of MNT, we multiply the ideel-air distancss by
(6.71/0.70)}/3 =71,005.) The "extended® pressure vs distance data
are shown in colums 4 and 5 of Tabls I beginning at 0.1927 psi and are
marked by asterisks.

*The well-known value of G.5 in the 5-50 psi range comes from TNT data
that 1ie sbout 15 psr cent above the curve of Figurs 2.

w
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5. CCYPARISONS WITH EXYERDMENT

The egreement of the nuclear real-air calculation with expsrimental
frec-air data (not shown here) is satisfactory in the 0.1-100 psi region.

For high explosives, the only available free-air data below 0.1 psi
are from Project BANSHEE, The BANSHEE events wers 500-1b pentolite
(not TNT) spheres detonated at altitudes up to 103,000 feet. Microbarograph
measurements were rade at the ground by Sandia and by BRL. The Sandia dets
(ref. 15) are shown on Figure 2. The slant range divided by (500)1/3= 7.9,
is plotted against measured reflected overpressure divided by twc tc convert
it to incident overpressure. These events took place in non-sea level
ambient conditions. The use of slsnt range versus overpressure corresponds -
to assuming that modified Sachs scaling holds (ref. 16).

The BANSHEE date are quite near the theoreticel curve (Fig. 2).

Some surface-burst data are zvailable in the 0.003-. psi range. It
is not necessarily appropriate to compare free-zir pressures with surface-
burst pressures measured psar the surface. However, iwo sels of surfaca
burst data are shown for corparisor in Figvre 2.

BRL syrface burst data: These date are pressure-gage measurements (ref. 17)
from 5, 20, and 100 ton surface bursts in Canada in 1959-61. Ths charges
were formed of TNT btlocks stacked on the gro% to form a hemisphere. The
plotted distances have been divided by (2 W) to reduce them to one pound
in free air. (The factor of 2 used here is for a rigid surface and does
not a8llow for close-3in energy losses to the ground. This number may be as
low as 1.5, depending on which free-air data are used in obteining It. The
exact velue does not matter for our purposes.)

NOL micro-ton 8 data: The dashed 1line on Figwre 2 is a fit to
145 pressure-gage measurements (ref. 18) from surface-burst #6 elsctric
blasting caps having an equivelent yield of 0.44 grems THT:

Ap = 8.21 R“]"42

where Ap is overpressure in psi andﬁ is radius in feet. The plotted
distences have been divided by (2 W)1/3 to reduce them to cne pownd in
free air.

The surface-burst data agree quits well with the calculated frse-air
curve down to about 0.2 psi. Below 0.2 psi the surface-burst data have a
much faster rate of decay of pressure with distance than doss the free-air
calculstion., This may be a real difference between surface bursts and
free-air bursts dus to energy losses from drag at ihe shock wave-ground
interfece, However, it should be pointed out that Forzel {ref, 19) has .
developed & free-air shock propagation theory that disagreas with the
present calculations and agrees very weli with the surface burst data.
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6. CCNCLUSICNS

Hydrocode calculations have been carried out to C.2 psi and
extended to 0.0001¢ psi for a nuclear explosicn in reel air and for
a THT explosion in real air. The resulting pressures agree well with

date near 0.001 psi from high altitude explosions of pentolite srheres.
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Table I

Peek Overpressure Vs Radius

Overpressure Cverpressure Ideal Muclsar Rsal Nuclear 1-1b TNT

o {psi) {bars) tus (kn) Ragius (lm)  Radius (m)
AR 25600. 1765. 0.01548
- 21660, 1463, .01637
18470. 1274, 01726
e 14420, 9944 .01875
S 11470. 791.2 .0202%,
9281. 639.9 0.02172 0.0192
7616. 525.1 02321 0204 0,042
6326, 436.2 02469 0215 .05
5313. 366.3 .02618 .0227 07
4506, 310.7 02766 0240 .08z
3854. 265.8 0.02915 0.0252 0.097
3138, 216.4 .03123 0268 .120
2394. 165.0 03420 .0252 154
1868, 123.8 03718 L0314 .185
1,87. 102.5 .C4015 .0339 219
1204. 83.00 0.04312 0.0362 0.250
989.3 68.21 04609 .0385 285
823.3 56.77 L0407 0420 .318
692.9 £7.717 05204 0435 .350
589.1 40,62 .05501 0460 .380
505.3 34.84 0.05728 0.0485 0.432
413.4 28.50 06214 L0529 458
317.8 2.91 .C6802 .0575 .519
250.4 17.2 07404 062, .58D
201.5 13.82 0799 0687 642
165.% 11.3% 0.0853%% 0.07.0 0.700
137.5 9.481 09189 .(0789 .760
116.1 8.006 0578, 0846 .810
99.27 6.844, .1038 0892 875
85.79 5.915 1097 0946 ,G10
74.87 5.162 0.1157 0.0997 0.955
62.78 4,329 JA240 . 1069 1,62
50,08 3.453 .1359 .1182 1.
40.57 ».825 479 .1295 1.25
34.22 2,35 .1598 MYATA 1.35
29.09 2,006 0.1737 0.1516 1.45
21.93 1.512 .1956 173 1.65
19.38 1.336 2075 JAR4 1.75
17.28 1.192 2194 1394 1.84
13.56 0.9347 2481 221 2,08

8




Ovarpressure
(psi)

I 11.38

¥ 9.743

3 E 8.474

| . 7.468
- ) 6.654
CR 5.426
g 40549
2 4,07,
. 3.533
Lo 3.103

2.769
2.491
2,065
1.899
1,586

1.3%

1.235

1.110
- 1.007
N 0.9202

0.8466
7283
5377
5662
4609

0.2873
.2917
.2326
.1927
1641

0.1426
.1125
. 09258
07845

B e

Overpressure 1deal Nuclser Real Nuclear

norme AG-_AR

AV ASA S

Table I (Cont'd)

(bars) Radius (km) Radius (xm)
0.7847 0.2719 0.243
L6718 2958 .265
.5843 3196 284
5149 - 3435 «307
4588 .3673 329
0.3741 0.4150 0.370
.3137 4627 413
.2809 4960 42
2436 .5436 439
2344 .5912 .520
0.1909 0.6389 0.562
1717 .6865 .603
424 .7818 695
.1309 8294 731
1063 9437 836
0.09585 1.03¢ 0.922
.08518 1.134 1.01
07655 1,228 1.09
06942 1.323 1.18
06345 1.417 1.265
£.05837 1.510 1.35
.05022 1.697 1.52
.04397 1.884 1.68
03904 2.070 1.85
.03178 2,443 2.18
0.02670 2.811 2.51
.02011 3.549 3.17
01604 4,286 3.82
.01329 5.022 *4.48
.01131 5.757 *5.1/,
0.009830 6.492 %579
007757 7.960 ¥7.10
.006383 9.427 %8 41
.005409 10.89 %9 71
004683 12.36 #131.03

* Sealed from the ideal nuclsar data.

9]

1-1b TNT
Radius (m)

2.27
2.45
2.63
2.82

W

23% 8

~ O\ \n f‘-#\#\\»w

-

030 ®
S

¥ TRERER

BREGR EB

BEER
234

®45.9

%51.8
*63.5
*75¢2
*86.9
*9E.6
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Table I (Cont'd)

; Overpressure Overpressure Ideal Nuclear Real Nueclsar 1-1b TNT

f (psi) {bars) Radius (xm) Radius (km) Radius (m)
0.05981 0.00412 13.82 %12,33 %110.3
.04813 003318 16.75 *34..9 %133,7
.04015 002769 19.68 %1755 ¥157.0
.03438 .00237¢ 2.61 %20,2 %180,
03001 002069 25,54 %228 220,
L 0.02659 0.001834 28,47 £25.4, ®227,
R .02318 001598 32.13 %28 Y %256,
- 01846 001272 406.91 %36,5 %326,
01526 .001052 46.76 %17 %373,
. .01076 amué &032 i5’7 04 *5]\3.
s 0.007659 0.0005281 87.73 *18.2 *700.
004813 .0003318 124.5 %320, #1073,
e 002880 .0001986 216.5 2163, #1728.
.;‘-:,' N ! .w1684 9@1161 356~9 *318- *28500
N 0007337 00005058 718.2 %694, #6210,
RES 0.0001639 0.00001130 3212, %2865, #25600.

* Sceled from the idsal nuclear data.
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